Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.)
نویسندگان
چکیده
Elevated arsenic content in food crops pose a serious human health risk. Apart from rice wheat being another main food crop is possibly cultivated on contaminated sites. But for wheat uptake mechanisms are not entirely understood especially with regard to nutrient fertilization and different moisture regimes taking into account heavy rainfall events due to climate change. Here we show that especially higher P-fertilization under changing redox conditions may enhance arsenic uptake. This counteracts with higher N-fertilization reducing arsenic transfer and translocation into aboveground plant parts for both higher P-fertilization and reducing soil conditions. Arsenic speciation did not change in grain but for leaves P-fertilization together with reducing conditions increased the As(V) content compared to other arsenic species. Our results indicate important dependencies of nutrient fertilization, moisture conditions and substrate type on As accumulation of wheat as one of the most important crop plants worldwide with implications for agricultural practices.
منابع مشابه
Correction: The Dynamic Process of Interspecific Interactions of Competitive Nitrogen Capture between Intercropped Wheat (Triticum aestivum L.) and Faba Bean (Vicia faba L.)
Wheat (Triticum aestivum L.)/faba bean (Vicia faba L.) intercropping shows significant overyielding and high nitrogen (N)-use efficiency, but the dynamics of plant interactions have rarely been estimated. The objective of the present study was to investigate the temporal dynamics of competitive N acquisition between intercropped wheat and faba bean with the logistic model. Wheat and faba bean w...
متن کاملSSM-Wheat: a simulation model for wheat development,growth and yield
A robust crop model can assist in genetic improvement and cultural management of the crop. The objectives of this study were to describe a wheat (Triticum aestivum L.) model and to report results of its evaluation. The model simulates phenological development, leaf development and senescence, crop mass production and partitioning, plant nitrogen balance, yield formation and soil water and ...
متن کاملEffect of salinity on wheat (Triticum aestivum L.) grain yield, yield components and ion uptake
Crops growing in salt-affected soils may suffer from physiological drought stress, ion toxicity, and mineral deficiency. A pot study was conducted in 2004-2005 in the Aghala area (northern Iran) to study the effect of different salinity levels, i.e. ECe= 3 (control), 8, 12 and 16 dS m-1 on wheat grain, yield components and leaf ion uptake of four Iranian wheat genotypes, i.e. Kouhdasht, Atrak, ...
متن کاملEffect of Phosphatic Fertilizers on Chemical Composition and Total Phosphorus Uptake by Wheat (Triticum aestivum L.)
Wheat (Triticum aestivum L.) was grown in earthen pots containing soil of Balkasar Soil Series (Sandy Loam) in green house at the Department of Soil Science and SWC, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi during Rabi season, 2007. The Crop was treated with two levels of Phosphorus (40 and 80 kg P ha-1 ) in the form of SSP, TSP, NP and DAP. A basal doze of 100 kg N and 60 kg K...
متن کاملارتباط اجزای روی با پاسخهای گندم ((Triticum aestivum L. در برخی خاکهای آهکی تیمارشده و تیمارنشده با لجن فاضلاب
Studying the distribution of Zn in the soils allows investigating their mobility and bioavailability. In this research, 10 calcareous soil samples were selected, and sewage sludge-amended (1% w/w) and -unamended (control) soils were incubated for 1 month. Before planting, fractions of Zn were determined, three seeds of wheat were planted in each pot and after 8 weeks, they were harvested. Resul...
متن کامل